钛合金具有密度低、比强度高、耐腐蚀、热强性好、无磁以及生物相容性好等优良特性,已被广泛应用于航空、航天、舰船、化工、冶金及生物医用等领域。根据合金本身特性及应用状况的不同,钛合金可分为高强钛合金、损伤容限钛合金、高温钛合金、低温钛合金、耐蚀船用钛合金、低成本钛合金、医用钛合金等几大类。中国钛工业经过60年的发展已取得举世瞩目的成绩,海绵钛和钛加工材产量都已居于世界前列,并形成了完整的研发与生产体系。
近二十年,我国开发成功的新型钛合金超过30种,本工作将对主要的新型钛合金研发现状与进展进行介绍。
1、高强及损伤容限钛合金
高强及损伤容限钛合金最初主要是针对航空飞行器的应用而研发的。20世纪60年代以来,航空飞行器除向高速、高机动的方向发展,高可靠性和长寿命成为其越来越重要的发展方向,飞机的设计准则从早期的疲劳安全寿命设计发展到现今的耐久性/损伤容限设计[1,2]。这种变化对材料的损伤容限性提出更高要求,因此飞机构件的选材必须在强度、塑性基础上,综合考虑断裂韧度、抗疲劳性能、比强度、寿命期成本等多方面性能。在这种需求的推动下,具有高断裂韧度、高强度、低裂纹扩展速率的高强及高损伤容限性钛合金越来越受到重视[3]。国内自主研发并获得应用的高强及损伤容限钛合金主要有高强高韧损伤容限TC21合金、中强高韧损伤容限TC4-DT合金、超高强Ti-合金、超高强Ti-26合金四种,同时也研制出高强Ti-B20和TB10合金,高强韧BTi-合金、超高强Ti-合金等。
1.1高强钛合金Ti-
Ti-合金是一种高强结构钛合金,为Ti-Al-Mo-V-Cr-Zr系。合金具有性能可调范围宽、强塑性及强韧性匹配优良的特点,用于结构件时强度可达MPa[4]。
高强钛合金通常指室温强度大于MPa的钛合金,主要用于飞行器及先进装备的结构件。Ti-和BT-22钛合金是目前应用最多的商业高强钛合金,一般在~MPa的强度水平,断裂韧度大多在45~60MPa·m1/2之间使用,很难进一步提高其强韧性匹配[5~8]。然而,航空飞行器的发展对高强结构钛合金的韧性、疲劳性能及淬透性提出了更高的要求,最近几年,国外对适于飞行器结构件具有更高强度级别的高强结构钛合金的研究非常重视。其代表性的合金是美国TIMET公司开发出的Ti-(Ti-5Al-5Mo-5V-3Cr-0.4Fe)和俄罗斯VSMPO公司开发的Ti-1(Ti-5Al-5Mo-5V-3Cr-1Zr)合金[9~11]。Ti-合金应用目标同Ti-合金近似。该合金以高强结构件为应用目标时,一般在合金的β相变点以下进行固溶+时效(STA)处理,以保证合金的强塑性匹配[12,13]。然而,出于提高结构服役可靠性和寿命的需要,也开发出β退火后缓慢冷却+时效(BASCA)热处理,该状态强度略低但具有更高的损伤容限特性[14]。这两种状态下的典型组织如图1所示。表1中列出的是Ti-钛合金不同规格棒材热处理后的性能,经不同热处理后,合金的性能有较大的调整范围,为合金在不同领域的应用奠定了基础。目前,该合金已经成功应用。大规格棒材用于弹体结构件,小规格棒材用于弹簧及紧固件[15]。
1.2损伤容限钛合金
目前较为典型的损伤容限钛合金有两种,一种是高强高韧损伤容限钛合金TC21,一种是中强高韧损伤容限钛合金TC4-DT。
TC21合金是我国研制的第一个高强高韧损伤容限钛合金[16],其名义成分为Ti-6Al-2Sn-2Zr-2.5Mo-2Nb-1.5Cr-xSi。合金室温强度可达MPa以上,断裂韧度不低于70MPa·m1/2[17],强度、断裂韧度、裂纹扩展抗力、热稳定性的综合匹配方面不低于Ti-合金,与美国的Ti-S合金相当甚至更优。该合金经过“十五”、“十一五”期间的研究,已在飞机上获得应用,成为新型战机的关键结构材料。目前,可生产最大直径为φmm的TC21钛合金棒材。棒材典型室温力学性能为Rm≥MPa,Rp0.2≥MPa,A5≥8%,Z≥20%,KIC≥70MPa·m1/2,da/dN≤2×10-5mm/cycle。合金一般使用状态的组织为网篮状或三态组织。
TC21合金采用准β锻造技术[18]、近β锻造技术,以获得网篮组织或三态组织,实现高的断裂韧度及低的裂纹扩展速率,即达到控制组织满足损伤容限的目的。目前有学者在进行TC21合金新的成形技术的研究,如昝林等[19]研究合金的激光成形工艺,赵文娟等[20]研究合金的超塑性成形等。
TC4-DT合金是在TC4ELI合金基础上发展起来的,其性能与Ti-6Al-4VELI相当[21~23]。该合金具有中等强度(Rm≥MPa)、高断裂韧度(KIC≥90MPa·m1/2)、高损伤容限和长疲劳寿命等综合性能匹配的特点。和其他中等强度钛合金相比,在强度、塑性水平相当的条件下,TC4-DT具有相当高的断裂韧度和抗疲劳裂纹扩展能力,已是我国新型飞机的关键结构材料。TC4-DT的合金成分范围比美国的Ti-6A1-4VELI控制更严格,具体为Al6.0~6.35,V3.6~4.4,Fe≤0.25,C≤0.05,O≤0.13,N≤0.03,H≤0.,Ti余量。目前TC4-DT钛合金已批量化生产,试生产的最大棒材直径为φmm。不同规格棒材的性能稳定(表2)。热处理后的典型微观组织见图2,为β转+等轴α组织,保证合金具有良好的综合性能。同时,也研制出40~80mm厚、mm宽的宽幅厚板和1~10mm厚、mm宽的薄板,合金的板材的性能达到相应的技术指标要求。
2、高温钛合金
高温钛合金是随着航空发动机的需求而发展的,随着发动机性能的提升,要求钛合金的服役温度更高。20世纪50年代最早用于航空发动机的Ti-6A1-4V合金服役温度一般不超过℃。目前,代表常规高温钛合金发展最高水平的合金分别是英国的IMI、美国的Ti-及俄罗斯的BT36,其最高使用温度最可达到℃[24~27]。高温钛合金不但具有良好的高温强度,还应具备优异的高温蠕变、持久、疲劳等综合性能以满足先进航空发动机对材料的需求。近二十年来,国内自主研发的高温钛合金主要有℃用Ti55,TiG,TiS,℃用的Ti60合金[28~33]、Ti合金[34~36]及TG6合金[37]等。
我国高温钛合金的研制采取的是仿制、改造+创新的方式。Ti-G是我国首次自主研发的添加稀土元素的℃高温钛合金。合金中加入稀土元素Gd,其活性高,熔炼过程内氧化形成弥散分布的富Gd第二相,细化铸锭的晶粒尺寸,改善合金的热加工性,并提高了合金的热稳定性。Ti55合金中添加的稀土元素Nd起到类似的作用。下面主要介绍Ti60和Ti钛合金。另外,TG6合金是在IMI合金基础上,研制出的一种新型高温合金,由该合金制备出的模锻件具有良好的力学性能。
2.1Ti60钛合金
Ti60钛合金是自20世纪90年代末开始研制的一种近α型℃高温钛合金,是在Ti55合金的基础上进行成分优化而来的,其名义成分为Ti-6Al-2Zr-4.8Sn-1Mo-0.35Si-0.85Nd。随着研究深入,获悉元素Nd形成的稀土氧化物分布会降低合金的疲劳等使用性能。为了解决这个问题,该合金的成分不断调整,吸收IMI等高温钛合金设计理念后,其最终确定的名义成分为Ti-5.8Al-3.5Zr-4.0Sn-0.4Mo-1.0Ta-0.4Nb-0.4Si-0.06C。目前,该合金已进入工程化阶段,制备出直径mm大规格棒材,表3为该合金的主要力学性能。
2.2Ti钛合金
Ti合金是在“九五”期间开始研制的℃高温钛合金。合金以美国的Ti-为基础合金,使用一般认为对钛合金有害的元素Y提高合金的高温性能,尤其是蠕变性能。测试结果表明,在℃条件下,Ti合金的热疲劳寿命超过Ti合金30%,超过IMI合金20%。该合金制备的汽车发动机气阀已提交给国外某公司用于新型跑车发动机试验。合金的优化改进仍在进行[38],合金铸态组织经热等静压处理后也具备较好的性能(表4)。
3、阻燃钛合金
常规钛合金作为航空发动机材料使用时,在一定条件下可能会发生快速氧化燃烧,引发“钛火”故障,从而造成重大事故。为了解决这个问题并满足高推重比航空发动机的需要,各国开展了高温阻燃钛合金的研制。美、俄等国从20世纪70年代就积极开展钛燃烧问题的研究,并先后研制成功各自的阻燃钛合金。美国研发的AlloyC(Ti-35V-15Cr)是一种高稳定化的β钛合金,该合金具有良好的阻燃性能和力学性能,已在F发动机中得到实际应用[39]。俄罗斯研发的Ti-Cu-Al系阻燃钛合金BTT-1和BTT-3仍处于实验室阶段。英国研制的Ti-25V-15Cr-2Al-xC阻燃合金已处于工程化研制阶段。
我国研制的Ti40阻燃钛合金的名义成分为Ti-25V-15Cr-0.2Si,国标中命名为TB12。Ti40钛合金经过十余年的研究,已取得一系列成果[40~44],掌握了高质量铸锭制备、大规格铸锭开坯、大规格棒材锻造、环材轧制等关键技术,制备出大规格棒材和环件。采用摩擦点燃实验方法测试表明,Ti40合金在具有良好阻燃性能[45](图3)的同时具有优良的力学性能(表5)。
目前Ti40合金主要目标是用于航空发动机的压气机机匣,以后还将应用于其他部位。
4、低温钛合金
发达国家早在20世纪60年代就着手研究低温钛合金,相继研发了多种用途的低温钛合金。前苏联在低温钛合金研制应用方面居世界领先水平,其早期研制的α钛合金OT4,OT4-1,BT5-1KT和ПT-3BKT等已在航天火箭技术装备中大量应用。欧美国家也根据自身需求开发了低温钛合金材料,如Ti5Al-2.5SnELI,Ti6Al-4VELI和Ti-6Al-3Nb-2Zr合金等。近年来,日本研制了LT(Ti-3Al-5Sn-1Mo-0.2Si)低温钛合金,用于制作液氢涡轮泵。
随着我国航天技术的发展,航天液体火箭发动机正向着大推力、高可靠、可重复使用的方向发展。液体氢、氧作为燃料的发动机是目前使用的最先进无污染的动力装置。为提高发动机推质比,需选用质量轻、比强度高的钛合金制造发动机构件,国内相继采用钛合金制作液氢贮箱等容器。CT20钛合金是国内目前唯一获得应用的具有自主知识产权的低温钛合金[46],-℃性能较Ti-6Al-4VELI和Ti-5Al-2.5SnELI更好。
CT20合金是一种液氢管路系统用的低温钛合金。CT20钛合金具有良好的加工性,易于加工制造管材,冷成形和焊接性能优良。表6中列出了CT20钛合金不同类型产品的室温及低温性能,20K下抗拉强度高达MPa以上,断后伸长率在10%以上。已成功研制出该合金的管材、饼、棒材和焊丝等产品,采用冷弯成形成功制备出CT20液氢管路用弯管并制成组件,在发动机上得到了应用。随着后续氢氧火箭发动机研制的不断深入,对CT20合金管材提出更高的使用要求,学者们开展系统管路用小弯曲半径(R=1D)弯管的热推制成形工艺研究,解决等壁厚、小弯曲半径CT20合金弯管的成形技术,满足氢氧火箭发动机对液氢管路的需求。
5、船用钛合金
舰船及其设备需要长期浸泡在海水和海洋大气环境中,使用环境对合金提出耐腐蚀性能高、寿命长、承载大、安全可靠等特殊要求,钛及其合金的特性满足舰船用材的各种要求,具备在舰船上应用的诸多优越性,被称为“海洋金属”。钛及其合金在舰船上的主要应用部位有:耐压壳体、螺旋桨、管道系统、动力装置、声纳系统等部位。我国船用钛合金工业起步于20世纪60年代,经过几十年的发展,其研究、制造水平有很大提高,并初步形成船用钛合金体系。目前已应用的自主研制船用钛合金牌号有:Ti31(MPa级)、Ti75(MPa级)、Ti(MPa级)和Ti80(MPa级),基本是在“七五”和“八五”期间研制成功的。近二十年中,研发的船用钛合金主要包括Ti91,Ti70和Ti-B19等。
5.1Ti91钛合金
Ti91钛合金是在20世纪90年代开始研制的一种新型中强透声近α型钛合金。该合金具有中等强度、高塑性、良好的透声性能、冷成形性能、可焊性及耐海水腐蚀等性能的良好匹配。Ti91合金的综合性能(表7)明显优于等强度合金TC1和TA5。该合金最大的特点是:声学性能优良,1~4mm板材厚度的透声系数大于96%,适于舰船声纳导流罩等声学探测系统应用。
5.2Ti-B19合金
Ti-B19合金是在“九五”期间设计研制的一种新型高强高韧耐蚀近β钛合金。该合金具有较高的强度、良好的塑性、较高的断裂韧度、可焊性及耐海水腐蚀、冲刷腐蚀和应力腐蚀等综合性能[47,48]。
Ti-B19合金主要技术性能要求如下:
(1)力学性能(时效状态下):Rm≤MPa,Rp0.2≥MPa,A5≥6%,KIC≥70MPa·m1/2。
(2)耐海水腐蚀性能:在60℃海水中,均匀腐蚀率≥0.mm/a;10m/s流速下,冲刷腐蚀速率≤0.mm/a;KISCC/KIC≥0.8。
(3)合金可焊性良好:焊接系数≥0.8(20mm厚度以下,焊后热处理)。
(4)Ti-B19合金具有良好的加工性,可生产各种规格的棒、板、丝、饼等,并且焊接性能、工艺性能良好。已锻制出性能达标的φmm×mm饼材、φ10mm/φmm×mm筒体、φmm/φmm×mm模拟体(图4)和φmm×mm堵头。
6、耐蚀钛合金
钛合金在大多数介质中都具有良好的耐蚀性,专用耐蚀钛合金主要是针对特殊介质要求而开发的。国内耐蚀钛合金多为仿制。自20世纪70年代开始,我国成功仿制Ti-15Mo,Ti-32Mo,Ti-15Mo-0.2Pd,Ti-2Ni,T-0.2Pd,Ti-0.3Mo-0.8Ni,Ti-0.05Ni-0.05Ru等合金,其中Ti-0.3Mo-0.8Ni和T-0.2Pd钛合金已实现工业化生产。为提供更高效、洁净的能源,发展核电是大势所趋,但核乏燃料对人体具有很强辐射作用,严重影响人体健康,如何处理核乏燃料是重要的关键技术问题。
Ti35钛合金是针对核乏燃料后处理环境设计、开发成功的一种α型耐沸腾硝酸腐蚀钛合金。Ti35钛合金冲击韧度可达J/cm2,并具有良好的冷加工工艺性能,板材弯曲角可达到°以上(D=3t)(图5),其扩口、压扁性能(图6)与纯钛相当。目前,已经展开Ti35合金的工程化研究,掌握Ti35钛合金板、棒、管、丝、锻件及专用焊丝的制备技术。小批量生产该合金的管、板、锻件等,用于中试规模的核乏燃料后处理装备,初步建立Ti35合金加工、验收工艺标准体系。
工业规模制备的Ti35钛合金及其焊接件在核乏燃料模拟溶解液中显示出优良的抗应力腐蚀性能、缝隙腐蚀性能和很强的氧化膜再生能力,均匀腐蚀速率<0.1mm/a,显示出比高纯奥氏体不锈钢更好的耐蚀性和适应性。在核乏燃料后处理工程中具有广阔的产业化应用前景。目前,Ti35合金已设计应用到我国核乏燃料后处理工程关键设备中。另外,该合金在核废料的储存器,与高温硝酸接触的各种设备,包括硝酸生产、浓缩、回收等相关的加热器、蒸发器、浓缩器以及阀门泵、风机等。该合金还可在高温铬酸、二氧化氯、氯化物的还原酸中应用。
7、医用钛合金
钛合金由于密度小、比强度高、弹性模量低、耐腐蚀以及优良的生物相容性和加工成形性,是较理想的外科植入物用功能结构材料。纯钛、Ti-3Al-12.5V、Ti-6Al-4V钛合金属于第一代医用钛合金。
到20世纪90年代中期,瑞士和德国先后开发出第二代以Nb,Fe替代V的α+β型两相医用钛合金Ti-6Al-7Nb和Ti-5Al-2.5Fe,被列入国际生物材料标准,并开始在临床应用。近10年来,多元系亚稳β型合金已成为第三代医用钛合金的主要研究开发方向。截至目前,世界各国开发成功的新型介稳β型钛主要包括美国开发的Ti-3Nb-3Zr,TMZF,Ti-35Nb-5Ta-7Zr,Ti-15Mo等,日本开发的Ti-15Mo-5Zr-3Al,Ti-29Nb-13Ta-5Zr等,德国开发的Ti-30Ta等[49~51]。
国内有代表性的亚稳β型钛合金主要有新型低模量钛合金TLM及Ti(Ti-24-Nb-4Zr-7.6Sn)合金等[52~55]。
TLM钛合金是在年研发成功的一种低模量医用亚稳β钛合金,其名义成分为Ti3Zr2Sn3Mo25Nb。TLM合金在室温下的屈服强度在~MPa之间,抗拉强度为~MPa,断面收缩率为6%~39%,弹性模量最低达到38GPa。经过时效处理使亚稳β相部分分解,合金产生时效强化,并达到较好的强度、塑性与低模量化匹配。目前,采用TLM钛合金制备出血管支架等多种医用植入体产品。
8、低成本钛合金
高价格一直是限制钛合金大量应用的最大障碍,降低钛合金成本成为当前钛合金研究领域最受